Crank-Nicolson Scheme for Numerical Solutions of Two-dimensional Coupled Burgers’ Equations
نویسندگان
چکیده
The two-dimensional Burgers’ equation is a mathematical model to describe various kinds of phenomena such as turbulence and viscous fluid. In this paper, Crank-Nicolson finite-difference method is used to handle such problem. The proposed scheme forms a system of nonlinear algebraic difference equations to be solved at each time step. To linearize the non-linear system of equations, Newton’s method is used. The obtained linear system is then solved by Gauss elimination with partial pivoting. The proposed scheme is unconditionally stable and second order accurate in both space and time. Numerical results are compared with those of exact solutions and other available results for different values of Reynolds number. The proposed method can be easily implemented for solving nonlinear problems evolving in several branches of engineering and science.
منابع مشابه
Comparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation
Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...
متن کاملNumerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملCrank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation
In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable. Keywords—Generalized Rosenau-B...
متن کاملA Note on Crank-Nicolson Scheme for Burgers’ Equation
In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analy...
متن کاملNumerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank Nicholson, used for solving the one-dimensional Burgers equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to the conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011